Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 726
Filtrar
1.
Sci Rep ; 14(1): 8389, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600093

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to most chemotherapy drugs, leading to poor chemotherapy efficacy. Recently, Trametinib and Palbociclib have promising prospects in the treatment of pancreatic cancer. This article aims to explore the effects of Trametinib on pancreatic cancer and address the underlying mechanism of resistance as well as its reversal strategies. The GDSC (Genomics of Drug Sensitivity in Cancer) and CTD2 (Cancer Target Discovery and Development) were utilized to screen the potential drug candidate in PDAC cell lines. The dose-increase method combined with the high-dose shock method was applied to induce the Trametinib-resistant PANC-1 and MIA PaCa-2 cell lines. The CCK8 proliferation assay, colony formation assay, flow cytometry, and western blot were conducted to verify the inhibitory effect of Trametinib and Palbociclib. RNA-seq was performed in resistant PDAC cell lines to find the differential expression genes related to drug resistance and predict pathways leading to the reversal of Trametinib resistance. The GDSC and CTD2 database screening revealed that Trametinib demonstrates a significant inhibitory effect on PDAC. We found that Trametinib has a lower IC50 than Gemcitabine in PDAC cell lines. Both Trametinib and Gemcitabine can decrease the proliferation capacity of pancreatic cells, induce cell cycle arrest, and increase apoptosis. Simultaneously, the phosphorylation of the AKT and ERK pathways were inhibited by the treatment of Trametinib. In addition, the RNA-seq of Trametinib-induced resistance PDAC cell lines reveals that the cyclin-dependent kinase (CDK)-RB-E2F regulatory axis and G2/M DNA damage checkpoint might lead the drug resistance. Besides, the combination of Trametinib with Palbociclib could inhibit the proliferation and cell cycle of both resistant cells lines and also restore the sensitivity of drug-resistant cells to Trametinib. Last but not least, the interferon-α and interferon-γ expression were upregulated in resistance cell lines, which might lead to the reversal of drug resistance. The study shows Trametinib has a critical inhibitory effect on PDAC. Besides, the combination of Trametinib with Palbociclib can inhibit the proliferation of PDAC-resistant cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Proliferação de Células , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ciclo Celular , Quinases de Proteína Quinase Ativadas por Mitógeno , Quinase 4 Dependente de Ciclina
2.
Sheng Li Xue Bao ; 76(2): 215-223, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658371

RESUMO

This study aimed to investigate the effects of microtubule associated tumor suppressor 1 (MTUS1) on hemeoxygenase 1 (HMOX1) expression and hemin-induced apoptosis of vascular endothelial cells and its regulatory mechanism. RNA sequencing, RT-qPCR and Western blot were used to assess altered genes of hemin binding proteins, the expression of cAMP response element-binding protein (CREB) and nuclear respiratory factor 2 (NRF2), hemin-induced HMOX1 expression in MTUS1 knockdown human umbilical vein endothelial cells (HUVEC), and the effect of overexpression of CREB and NRF2 on HMOX1 expression in MTUS1 knockdown 293T cells. The effect of MTUS1 or HMOX1 knockdown on hemin-induced apoptosis in HUVEC, and the overexpression of NRF2 on hemin-induced apoptosis in MTUS1 knockdown 293T cells were assayed with CCK8 and Western blot. The results showed that MTUS1 was knocked down significantly in HUVEC by siRNA (P < 0.01), accompanied by decreased HMOX1 expression (P < 0.01). The increased HMOX1 expression induced by hemin was also inhibited by MTUS1 knockdown (P < 0.01). And the apoptosis of HUVEC induced by hemin was amplified by MTUS1 or HMOX1 knockdown (P < 0.01). Moreover the expression of CREB and NRF2 were both inhibited by MTUS1 knockdown in HUVEC (P < 0.01). The decreased HMOX1 regulated by MTUS1 knockdown could be rescued partly by overexpression of NRF2 (P < 0.01), however, not by overexpression of CREB. And the MTUS1 knockdown mediated decreased 293T cells viability induced by hemin could be partly rescued by NRF2 overexpression (P < 0.01). These results suggest that MTUS1 can inhibit hemin-induced apoptosis of HUVEC, and the mechanism maybe related to MTUS1/NRF2/HMOX1 pathway.


Assuntos
Apoptose , Heme Oxigenase-1 , Hemina , Células Endoteliais da Veia Umbilical Humana , Fator 2 Relacionado a NF-E2 , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Hemina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
3.
Biochem Pharmacol ; : 116230, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643905

RESUMO

One of the effective therapeutic strategies to treat rheumatoid arthritis (RA)-related bone resorption is to target excessive activation of osteoclasts. We discovered that 6-O-angeloylplenolin (6-OAP), a pseudoguaianolide from Euphorbia thymifolia Linn widely used for the treatment of RA in traditional Chinese medicine, could inhibit RANKL-induced osteoclastogenesis and bone resorption in both RAW264.7 cells and BMMs from 1 µM and protect a collagen-induced arthritis (CIA) mouse model from bone destruction in vivo. The severity of arthritis and bone erosion observed in paw joints and the femurs of the CIA model were attenuated by 6-OAP administered at both dosages (1 or 5 mg/kg, i.g.). BMD, Tb.N and BV/TV were also improved by 6-OAP treatment. Histological analysis and TRAP staining of femurs further confirmed the protective effects of 6-OAP on bone erosion, which is mainly due to reduced osteoclasts. Molecular docking indicated that c-Src might be a target of 6-OAP and that phosphorylation of c-Src was suppressed by 6-OAP treatment. CETSA and SPR assay further confirmed the potential interaction between 6-OAP and c-Src. Three signaling molecules downstream of c-Src that are vital to the differentiation and function of osteoclasts, NF-κB, c-Fos and NFATc1, were also suppressed by 6-OAP in vitro. In summary, the results demonstrated that the function of c-Src was disrupted by 6-OAP, which led to the suppression of downstream signaling vital to osteoclast differentiation and function. In conclusion, 6-OAP has the potential to be further developed for the treatment of RA-related bone erosion.

4.
J Plant Physiol ; 296: 154239, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574493

RESUMO

Small GTPase is a type of crucial regulator in eukaryotes. It acts as a molecular switch by binding with GTP and GDP in cytoplasm, affecting various cellular processes. Small GTPase were divided into five subfamilies based on sequence, structure and function: Ras, Rho, Rab, Arf/Sar and Ran, with Rab being the largest subfamily. Members of the Rab subfamily play an important role in regulating complex vesicle transport and microtubule system activity. Plant cells are composed of various membrane-bound organelles, and vesicle trafficking is fundamental to the existence of plants. At present, the function of some Rab members, such as RabA1a, RabD2b/c and RabF2, has been well characterized in plants. This review summarizes the role of Rab GTPase in regulating plant tip growth, morphogenesis, fruit ripening and stress response, and briefly describes the regulatory mechanisms involved. It provides a reference for further alleviating environmental stress, improving plant resistance and even improving fruit quality.


Assuntos
Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Biológico
5.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1029-1039, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658146

RESUMO

This study aimed to visualize the morphological features and dynamic changes of tomato mitochondria to provide a basis for the study of its mitochondrial functions. In this study, transgenic tomatoes expressing mitochondria-localized green fluorescent protein (mitochondria-GFP, Mt-GFP) were obtained by Agrobacterium-mediated genetic transformation. The color, hardness, soluble solids, acidity content, respiration rate, and ethylene production of the transgenic Mt-GFP tomato fruits were determined at the stage of mature green, breaker, and 3, 6, 9 days after breaker, while the wild-type tomato fruits were used as a control. As expected, Mt-GFP recombinant protein did not affect the ripening process, but induced the increased acidity of tomato fruits. The accumulations of Mt-GFP protein in tomato leaves and fruits were successfully verified by Western blotting. The morphological characteristics of mitochondria in flower, leaf and fruit cells as well as the dynamic changes of mitochondria in flower cells were clearly observed and studied under confocal laser microscope. The development of transgenic Mt-GFP tomato plants helps the visualization of tomato mitochondria and provides good research materials for the study of mitochondrial function during tomato development and fruit ripening.


Assuntos
Proteínas de Fluorescência Verde , Mitocôndrias , Dinâmica Mitocondrial , Plantas Geneticamente Modificadas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Frutas/metabolismo , Frutas/genética
6.
Oncogene ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454138

RESUMO

Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.

7.
Nat Commun ; 15(1): 2236, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472181

RESUMO

Continued emergence of SARS-CoV-2 variants of concern that are capable of escaping vaccine-induced immunity highlights the urgency of developing new COVID-19 therapeutics. An essential mechanism for SARS-CoV-2 infection begins with the viral spike protein binding to the human ACE2. Consequently, inhibiting this interaction becomes a highly promising therapeutic strategy against COVID-19. Herein, we demonstrate that ACE2-expressing human lung spheroid cells (LSC)-derived exosomes (LSC-Exo) could function as a prophylactic agent to bind and neutralize SARS-CoV-2, protecting the host against SARS-CoV-2 infection. Inhalation of LSC-Exo facilitates its deposition and biodistribution throughout the whole lung in a female mouse model. We show that LSC-Exo blocks the interaction of SARS-CoV-2 with host cells in vitro and in vivo by neutralizing the virus. LSC-Exo treatment protects hamsters from SARS-CoV-2-induced disease and reduced viral loads. Furthermore, LSC-Exo intercepts the entry of multiple SARS-CoV-2 variant pseudoviruses in female mice and shows comparable or equal potency against the wild-type strain, demonstrating that LSC-Exo may act as a broad-spectrum protectant against existing and emerging virus variants.


Assuntos
COVID-19 , Exossomos , Cricetinae , Feminino , Animais , Humanos , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Distribuição Tecidual , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes
8.
Phys Chem Chem Phys ; 26(12): 9462-9474, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446428

RESUMO

In this work, a dielectric metasurface composed of a silicon nanodisk etched with a square hole is proposed. By introducing C4v symmetry breaking, the symmetry-protected bound states in the continuum (SP-BIC) is transformed into a quasi-BIC (Q-BIC), simultaneously inducing triple Fano resonances in the near-infrared light band corresponding to one dipole and two Q-BIC resonances. The characteristics of Q-BIC resonances are elucidated through multipole decomposition and near-field distribution analysis. Subsequently, monolayer graphene is integrated into the Si metasurface. The light field in the composite metasurface can be flexibly modulated by changing the Fermi level of graphene. This modulation enables optimal transmission with an enhancement of up to 252%, while the confined electromagnetic energy experiences a remarkable increase of about 1020%. Simulation results demonstrate that the Si-graphene composite metasurface exhibits a high refractive index sensitivity of 162 nm RIU-1, accompanied by a figure of merit of 170.526 RIU-1. This composite metasurface holds promise as a high-performance sensor in the near-infrared band and has potential for application in the fields of active tunable optical devices and biochemical sensing.

9.
Biol Trace Elem Res ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451442

RESUMO

Several nutrients are crucial in enhancing the immune system and preserving the structural integrity of bodily tissue barriers. Vitamin D (VD) and zinc (Zn) have received considerable interest due to their immunomodulatory properties and ability to enhance the body's immune defenses. Due to their antiviral, anti-inflammatory, antioxidative, and immunomodulatory properties, the two nutritional powerhouses VD and Zn are crucial for innate and adaptive immunity. As observed with COVID-19, deficiencies in these micronutrients impair immune responses, increasing susceptibility to viral infections and severe disease. Ensuring an adequate intake of VD and Zn emerges as a promising strategy for fortifying the immune system. Ongoing clinical trials are actively investigating their potential therapeutic advantages. Beyond the immediate context of the pandemic, these micronutrients offer valuable tools for enhancing immunity and overall well-being, especially in the face of future viral threats. This analysis emphasizes the enduring significance of VD and Zn as both treatment and preventive measures against potential viral challenges beyond the current health crisis. The overview delves into the immunomodulatory potential of VD and Zn in combating viral infections, with particular attention to their effects on animals. It provides a comprehensive summary of current research findings regarding their individual and synergistic impacts on immune function, underlining their potential in treating and preventing viral infections. Overall, this overview underscores the need for further research to understand how VD and Zn can modulate the immune response in combatting viral diseases in animals.

10.
Adv Sci (Weinh) ; 11(16): e2306174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368261

RESUMO

Patients with concurrent intrahepatic cholangiocarcinoma (ICC) and hepatolithiasis generally have poor prognoses. Hepatolithiasis is once considered the primary cause of ICC, although recent insights indicate that bacteria in the occurrence of hepatolithiasis can promote the progression of ICC. By constructing in vitro and in vivo ICC models and patient-derived organoids (PDOs), it is shown that Escherichia coli induces the production of a novel RNA, circGLIS3 (cGLIS3), which promotes tumor growth. cGLIS3 binds to hnRNPA1 and G3BP1, resulting in the assembly of stress granules (SGs) and suppression of hnRNPA1 and G3BP1 ubiquitination. Consequently, the IKKα mRNA is blocked in SGs, decreasing the production of IKKα and activating the NF-κB pathway, which finally results in chemoresistance and produces metastatic phenotypes of ICC. This study shows that a combination of Icaritin (ICA) and gemcitabine plus cisplatin (GP) chemotherapy can be a promising treatment strategy for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , DNA Helicases , Progressão da Doença , Escherichia coli , NF-kappa B , RNA Helicases , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , NF-kappa B/metabolismo , NF-kappa B/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Animais , Camundongos , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Transdução de Sinais/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Gencitabina , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética
11.
World Allergy Organ J ; 17(2): 100852, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38298830

RESUMO

Background: Roles of ILC2s in allergic rhinitis (AR) and local allergic rhinitis (LAR) are unclear. In this study, we are determined to find the levels of autophagy and mitophagy of ILC2s in allergic nasal inflammation. Methods: ELISA was used to detect type 2 inflammatory cytokines. Hematoxylin and eosin (H&E) staining were used to compare the eosinophil (EOS) infiltration of nasal tissue specimens. Flow cytometry was used to detect the levels of ILC2s and Th2 cells. Immunohistochemistry (IHC) and Western blot (WB) were used to detect the levels of Beclin1, LC3, p62, PINK1, Parkin, FUNDC1, and BNIP3 in nasal mucosa. The levels of autophagy related proteins and mitophagy related proteins of the ILC2s were detected by WB. The number of autophagosomes of ILC2s was observed by transmission electron microscopy. The co-localization levels of GFP-LC3 and Mito tracker in ILC2s were observed by confocal microscopy using immunofluorescence. Results: We found that the level of type 2 inflammation in AR and LAR mice was significantly increased. The levels of autophagy and mitophagy of AR and LAR mice in nasal mucosa and ILC2s were both increased. Conclusions: ILC2s may be associated with the occurrence and development of nasal allergic inflammation. The abnormal increase of autophagy and mitophagy levels in the nose may be associated with the incidence of AR and LAR. Abnormal autophagy and mitophagy levels of ILC2s cells may be one of the causes of allergic nasal inflammation.

12.
Environ Pollut ; 346: 123626, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395136

RESUMO

Iron overload in the aquatic environment can cause damage in fish bodies. Vitamin D3 (VD3) has been proven to have antioxidant and regulatory effects on iron transport. The current research investigated the effects of environmental iron overload on larval zebrafish and explored the effects of 1,25(OH)2D3 on ferroptosis in zebrafish larvae and zebrafish liver cells (ZFL) caused by iron overload in the environment and its possible regulatory mechanisms. The results showed that 1,25(OH)2D3 alleviated liver damage in zebrafish larvae and mitochondrial damage in ZFL after excessive ammonium ferric citrate (FAC) treatment, and improved the survival rate of ZFL. 1,25(OH)2D3 cleared and inhibited excessive FAC induced abnormal accumulation of ROS, lipid ROS, MDA, and Fe2+ in zebrafish larvae and ZFL, as well as enhanced the activity of antioxidant enzyme GPx4. Transcriptomic analysis showed that 1,25(OH)2D3 can regulate ferroptosis in ZFL by regulating signaling pathways related to oxidative stress, iron homeostasis, mitochondrial function, and ERS, mainly including ferroptosis, neoptosis, p53 signaling pathway, apoptosis, FoxO signaling pathway. Validation of transcriptome data showed that 1,25(OH)2D3 inhibits ferroptosis in zebrafish larvae and ZFL caused by excessive FAC via promoting the expression of slc40a1 and hmox1a genes and increasing SLC40A1 protein levels. In summary, 1,25(OH)2D3 can resist ferroptosis in zebrafish caused by iron overload in the environment mainly via regulating antioxidant capacity and iron ion transport.


Assuntos
Ferroptose , Sobrecarga de Ferro , Vitamina D/análogos & derivados , Animais , Peixe-Zebra/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Ferro/toxicidade , Ferro/metabolismo , Perfilação da Expressão Gênica
13.
Light Sci Appl ; 13(1): 49, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355566

RESUMO

Machine learning with optical neural networks has featured unique advantages of the information processing including high speed, ultrawide bandwidths and low energy consumption because the optical dimensions (time, space, wavelength, and polarization) could be utilized to increase the degree of freedom. However, due to the lack of the capability to extract the information features in the orbital angular momentum (OAM) domain, the theoretically unlimited OAM states have never been exploited to represent the signal of the input/output nodes in the neural network model. Here, we demonstrate OAM-mediated machine learning with an all-optical convolutional neural network (CNN) based on Laguerre-Gaussian (LG) beam modes with diverse diffraction losses. The proposed CNN architecture is composed of a trainable OAM mode-dispersion impulse as a convolutional kernel for feature extraction, and deep-learning diffractive layers as a classifier. The resultant OAM mode-dispersion selectivity can be applied in information mode-feature encoding, leading to an accuracy as high as 97.2% for MNIST database through detecting the energy weighting coefficients of the encoded OAM modes, as well as a resistance to eavesdropping in point-to-point free-space transmission. Moreover, through extending the target encoded modes into multiplexed OAM states, we realize all-optical dimension reduction for anomaly detection with an accuracy of 85%. Our work provides a deep insight to the mechanism of machine learning with spatial modes basis, which can be further utilized to improve the performances of various machine-vision tasks by constructing the unsupervised learning-based auto-encoder.

14.
ACS Nano ; 18(9): 6748-6765, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393984

RESUMO

Extracellular vesicles (EVs) are natural lipid nanoparticles secreted by most types of cells. In malignant cancer, EVs derived from cancer cells contribute to its progression and metastasis by facilitating tumor growth and invasion, interfering with anticancer immunity, and establishing premetastasis niches in distant organs. In recent years, multiple strategies targeting cancer-derived EVs have been proposed to improve cancer patient outcomes, including inhibiting EV generation, disrupting EVs during trafficking, and blocking EV uptake by recipient cells. Developments in EV engineering also show promising results in harnessing cancer-derived EVs as anticancer agents. Here, we summarize the current understanding of the origin and functions of cancer-derived EVs and review the recent progress in anticancer therapy targeting these EVs.


Assuntos
Antineoplásicos , Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/patologia , Vesículas Extracelulares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Transporte Biológico
15.
Nat Commun ; 15(1): 1267, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341421

RESUMO

Developing heterogeneous photocatalysts for the applications in harsh conditions is of high importance but challenging. Herein, by converting the imine linkages into quinoline groups of triphenylamine incorporated covalent organic frameworks (COFs), two photosensitive COFs, namely TFPA-TAPT-COF-Q and TFPA-TPB-COF-Q, are successfully constructed. The obtained quinoline-linked COFs display improved stability and photocatalytic activity, making them suitable photocatalysts for photocatalytic reactions under harsh conditions, as verified by the recyclable photocatalytic reactions of organic acid involving oxidative decarboxylation and organic base involving benzylamine coupling. Under strong oxidative condition, the quinoline-linked COFs show a high efficiency up to 11831.6 µmol·g-1·h-1 and a long-term recyclable usability for photocatalytic production of H2O2, while the pristine imine-linked COFs are less catalytically active and easily decomposed in these harsh conditions. The results demonstrate that enhancing the linkage robustness of photoactive COFs is a promising strategy to construct heterogeneous catalysts for photocatalytic reactions under harsh conditions.

16.
Pest Manag Sci ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358040

RESUMO

BACKGROUND: Entomophagous fungi (EPF) not only directly kill insect pests, but also colonize plants and improve their resistance against pests. However, most previous research has focused on Beauveria bassiana and Metarhizium anisopliae, and there are few reports on whether other EPF can enhance resistance against pests via endogenous colonization. Herein, an EPF strain was isolated from diseased larvae of Spodoptera litura in a soybean field, and subjected to genome-wide sequencing at the chromosomal level. The pathogenicity of the isolate toward various pest insects was evaluated, and the ability to colonize plants and induce resistance against phytopathogens and insect pests was tested. RESULTS: The purified isolate was identified as M. rileyi and designated MrS1Gz1-1. Biological assays revealed its strong pathogenicity toward five insect pests belonging to Lepidoptera and Hemiptera. Furthermore, the strain inhibited the growth of soil-borne plant disease caused by Sclerotinia sclerotiorum in vitro. It colonized plants as an endophyte via soil application, thereby inducing plant resistance-related genes against phytopathogen infection, and it disrupted the feeding selectivity of S. litura larvae. CONCLUSION: M. rileyi MrS1Gz1-1 has potential as a broad-spectrum microbial control agent that can induce resistance against phytopathogens and insect pests feeding as an endotype. The complete genome provides a valuable resource for exploring host interactions. © 2024 Society of Chemical Industry.

17.
Adv Healthc Mater ; 13(7): e2302481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242099

RESUMO

Antibacterial photodynamic therapy (APDT) has emerged as one of the intriguing strategies to combat bacterial resistance. However, the antibacterial efficacy of APDT is found to be severely impacted by the hydrogen sulfide (H2 S)-overproduced bacterial infection microenvironment. Herein, a multifunctional APDT platform is developed by assembling Cu2+ and chlorin e6 (Ce6), which exhibits unique H2 S-activatable fluorescence (FL) and antibacterial features. Noteworthily, the assembly conditions are crucial for achievement of Cu-Ce6 nanoassemblies (NAs) with the on-demand responsive properties. The quenched FL and photosensitization of Cu-Ce6 NAs can be selectively activated by the overexpressed H2 S in infected area, enabling specific recognition of bacterial infection and localized antibacterial therapy with minimized side effects. Significantly, amplified oxidative stress is achieved owning to the effective consumption of H2 S by Cu2+ in the NAs, leading to an enhanced APDT. The antibacterial mechanisms including broad-spectrum APDT activity of released Ce6, inherent sterilization effects of produced copper polysulfides and the accompanying disturbance of bacterial sulphide metabolism are further identified. This study may pave a new avenue for the rational design of intelligent APDT platform using minimalist biological building units and thus facilitating the clinical translation of nano-antibacterial agents.


Assuntos
Infecções Bacterianas , Clorofilídeos , Fotoquimioterapia , Porfirinas , Humanos , Cobre , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico
18.
Nat Nanotechnol ; 19(4): 565-575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212521

RESUMO

Lung carcinoma is one of the most common cancers and has one of the lowest survival rates in the world. Cytokines such as interleukin-12 (IL-12) have demonstrated considerable potential as robust tumour suppressors. However, their applications are limited due to off-target toxicity. Here we report on a strategy involving the inhalation of IL-12 messenger RNA, encapsulated within extracellular vesicles. Inhalation and preferential uptake by cancer cells results in targeted delivery and fewer systemic side effects. The IL-12 messenger RNA generates interferon-γ production in both innate and adaptive immune-cell populations. This activation consequently incites an intense activation state in the tumour microenvironment and augments its immunogenicity. The increased immune response results in the expansion of tumour cytotoxic immune effector cells, the formation of immune memory, improved antigen presentation and tumour-specific T cell priming. The strategy is demonstrated against primary neoplastic lesions and provides profound protection against subsequent tumour rechallenge. This shows the potential for locally delivered cytokine-based immunotherapies to address orthotopic and metastatic lung tumours.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Interleucina-12/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , RNA Mensageiro/genética , Interferon gama/genética , Citocinas , Microambiente Tumoral
19.
Tissue Eng Part A ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38205663

RESUMO

Organoids are three-dimensional (3D) in vitro tissue models that are derived from stem cells and can closely mimic the structure and function of human organs. The ability to create organoids that recapitulate the complex cellular architecture of organs has emerged as an innovative technique in biomedical research and drug development. However, traditional methods of organoid culture are time consuming and often yield low quantities of cells, which has led to the development of 3D bioprinting of organoids from bioinks containing suspended cells and desired scaffolds. A comparison across different organoid-building techniques, focusing on 3D bioprinting and its benefits, may be helpful and was yet to be distinguished. The goal of this review is to provide an overview of the current state of 3D bioprinting of organoids and its potential applications in tissue engineering, drug screening, and regenerative medicine.

20.
Sci Rep ; 14(1): 726, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184756

RESUMO

Intra-abdominal adhesions have consistently posed a challenge for surgeons during procedures. This study aims to investigate the feasibility of utilizing indocyanine green (ICG) in conjunction with near-infrared imaging for the detection of intra-abdominal adhesions. In vitro, we analyzed factors affecting ICG fluorescence. We divided SD rats into groups to study ICG excretion in different digestive tract regions. Additionally, we reviewed surgical videos from previous cholecystectomy cases, categorizing them by ICG injection timing and assessing fluorescence imaging in various digestive tract regions. Finally, we preoperatively injected ICG into two cholecystectomized patients with abdominal adhesions, guiding intraoperative adhesiolysis with near-infrared fluorescence imaging. In vitro, we observed a significant influence of protein and ICG concentrations on ICG fluorescence intensity. Our rat experiments unveiled a strong and highly significant correlation (Kendall's tau-b = 1, P < 0.001) between the timing of ICG injection and the farthest point of intestinal fluorescence. A retrospective case analysis further validated this finding (Kendall's tau-b = 0.967, P < 0.001). Under the guidance of fluorescence navigation, two cholecystectomized patients with intra-abdominal adhesions successfully underwent adhesiolysis, and no postoperative complications occurred. The intraoperative combination of ICG with near-infrared fluorescence imaging effectively enhances the visibility of the liver, bile ducts, and various segments of the gastrointestinal tract while providing real-time navigation. This real-time fluorescence guidance has the potential to aid surgeons in the dissection of intra-abdominal adhesions.


Assuntos
Verde de Indocianina , Cirurgiões , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos , Dissecação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...